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Historic Opportunities

" Longitudinal Studies (health outcomes)
= Drug interactions
" Genetic interactions (increased granularity)

= Connecting the Dots:

" Linking data like ER room visits and death
certificates improves quality tracking and health
practice innovation
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Growing Privacy Challenges

= Commercial incentives to link data for
marketing purposes

= Health Insurance has increasing incentives to

identify “cherries to pick” (if health outcomes
are highly predictive, can a insurance based health
payment system survive?)

= |dentity Theft
= Public Trust is threatened.
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Three Proposed Access Models

w/Common Privacy Architecture

= Sandbox Enclave

= Synthetic Data created using “Formal Privacy”
techniques

= Secure Multi-party Computing

* Employing a Common Privacy Architecture
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Common Privacy Architecture Proposal

= Dataset level enforced Provenance
= Separation of PHI using Pseudo-IDs
= Unalterable Logging of all operations

= Results in a mechanism for independent
“Privacy Auditing” much like independent
“Financial Auditing”.
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Common Architecture: Provenance

= Dataset level, not just patient level
= Machine/Human Readable (XML like HL7)
" Includes all Human agreed usage agreement

= |ncludes “Creation Characteristics” and “Chain
of Custody”

" |Includes all data transformations & usages
= Creates a new valid provenance for all extracts
= |s digitally finger printed to the data
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Common Architecture: PHI replaced by Pseudo-ID

= PHI stored separately and encrypted (reduces Identity
Theft Risk)

: Linking record attributes to PHI is done by random
“Pseudo-lds”, any re-linkage can be logged.

= Pseudo IDs can be separate by Organization (not a
universal Pseudo ID)

= Any Linking is done using Pseudo ID mapping
= All linkage using Pseudo IDs are logged

= All linkage of PHI to attribute data are logged.
= Creates a new valid provenance for all extracts
= |s digitally finger printed to the data
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Common Architecture: Unalterable data
manipulation logging

= All data interactions are logged.

" Log is set up cryptographically so that it supports
only appending, and breaks if edited.

= Enforcement using proper procedures can access the
data, but will be forcibly logged.
" Machine Learning techniques can be run on logs
to discover re-identification related activities.

" The log plus the provenance document can be
used to conduct “independent privacy audits”.
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Model 1: Semi-Trusted Analytical Sandbox
Enclosure

= All researchers must be semi-trusted (background
check and face penalties)

" |ndividual records (consisting of pseudo-lds and
attributes) are restricted from being matched to
data that includes PHI. (this is fundamental)

» Research the ability to do analysis only using
distributions of records (of limited attributes)
rather than individual records should be explored.

" Public outputs should be “Formally Privatized”.
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Model 2: Publically Released Synthetic
Differentially Private Dataset

= When created, the creator must pre-
determine which data elements have the least
amount of noise added to them. There is a
limit to the number of questions that you can
ask a particular “formally privatized” dataset.

= We need more research on how well a
synthetic dataset can provide the same
analytical answers that the confidential data
can provide.
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Model 3: Secure Multi-party Computing

Distributed computing over encrypted data

" Can use the common privacy architecture
* Individual records are not visible

" Pre-limit the type of analysis permitted

" Currently up to 100 times slower

= Currently being explored by the DARPA “Brandeis
Project”

" Currently being explored by Census to get near-
real-time business data for Economic Statistics
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