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A Historic and Important
Societal Debate is underway...
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Public Policy Collision Course



The Research Value of De-identified Data
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Misconceptions about HIPAA De-identified Data:

“It doesn’t work...” “easy, cheap, powerful re-
identification” (Ohm, 2009 “Broken Promises of Privacy”)

Pre-HIPAA Re-identification Risks {Zip5, Birth date,
Gender} able to identify 87%?, 63%, 28%? of US

Population (sweeney, 2000, Golle, 2006, Sweeney, 2013 )

m Post-HIPAA Reality: HIPAA compliant de-identification
provides important privacy protections

— Safe harbor re-identification risks have been estimated at
0.04% (4 in 10,000) (Sweeney, NCVHS Testimony, 2007)

m Post-HIPAA Reality: Under HIPAA de-identification
requirements, re-identification is expensive and time-
consuming to conduct, requires substantive
computer/mathematical skills, is rarely successful, and
usually uncertain as to whether it has actually
succeeded



Misconceptions about HIPAA De-identified Data:

“It works perfectly and permanently...”

mReality:
—Perfect de-identification is not possible.

—De-identifying does not free data from all
possible subsequent privacy concerns.

—Data is never permanently “de-identified”...

There is no 100% guarantee that de-identified
data will remain de-identified regardless of
what you do with it after it is de-identified.
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Balancing Disclosure Risk/Statistical Accuracy

Balancing disclosure risks and statistical accuracy is
essential because some popular de-identification
methods (e.g. k-anonymity) can unnecessarily, and
often undetectably, degrade the accuracy of de-
identified data for multivariate statistical analyses or
data mining (distorting variance-covariance matrixes,
masking heterogeneous sub-groups which have been
collapsed in generalization protections)

This problem is well-understood by statisticians, but not
as well recognized and integrated within public policy.

Poorly conducted de-identification can lead to “bad
science” and “bad decisions”.

Reference: C. Aggarwal http://www.v1db2005.0rg/program/paper/£fri/p901l-aggarwal.pdf



http://www.vldb2005.org/program/paper/fri/p901-aggarwal.pdf
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If this is what we are going to do to our ability
to conduct accurate research - then... we
should all just go home.

Although poorly conducted de-identification can distort
our ability to learn what is true leading to “bad
science/decisions”, this does not need to be an
iInevitable outcome.

Well-conducted de-identification practice always
carefully considers both the re-identification risk context
and examines and controls the possible distortion to
the statistical accuracy and utility of the de-identified
data to assure de-identified data has been
appropriately and usefully de-identified.

But doing this requires a firm understanding/grounding
in the extensive body of the statistical disclosure
control/limitation literature.



Data Privacy Concerns are Far Too Important (and Complex)
to be summed up with Catch Phrases or “Anecdata”

Eye-catching headlines and twitter-buzz announcing
“There’s No Such Thing as Anonymous Data” might draw
the public’s attention to broader and important concerns
about data privacy in this era of “Big Data”,

but such statements are essentially meaningless, even
misleading, for further generalization without consideration
of the specific de/re-identification contexts -- including the
precise data details (e.g., number of variables, resolution of
their coding schemas, special data properties, such as
spatial/geographic detail, network properties, etc.) de-identification
methods applied, and associated experimental design for re-
identification attack demonstrations.

Good Public Policy demands reliable scientific evidence...
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Unfortunately, de-
identification public
policy has often
been driven by
largely anecdotal
and limited
evidence, and re-
identification
demonstration
attacks targeted to
particularly
vulnerable
individuals, which
fail to provide
reliable evidence
about real world re-
identification risks
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Precautionary Principle or
Paralyzing Principle?
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Re-identification Demonstration Attack Summary

. Attack Against
i ; Statistical - ) 2
Quasi-ldentifers (w/ villisarable| Sampiiin Individuals w/ At-Risk HIPAA Compliant Demonstrated
Re-identification HIPAA exclusion data Subgroup | to Select Alleged/Verified| Sample Notable Headlines (or SDL Protected) | Re-identification
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roject 55 1o anoenymoeus participants "¢ Excluded)
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« Publicized attacks have been on data without HIPAA de-identification protection.

reliable evidence supporting this portrayal.

Many attacks targeted especially vulnerable subgroups and did not use sampling to assure
representative results.

Press reporting often portrays re-identification as broadly achievable, when there isn’t




Re-identification Science Policy Short-comings:

6 ways in which “Re-identification Science” has (thus far)
typically failed to best support sound public policies:

1. Attacking only trivially “straw man” de-identified data,
where modern statistical disclosure control methods
(like HIPAA) weren’t used.

2. Targeting only especially vulnerable subpopulations and
failing to use statistical random samples to provide
policy-makers with representative re-identification risks
for the entire population.

3. Making bad (often worst-case) assumptions and then
failing to provide evidence to justify assumptions.

Corollary: Not designing experiments to show the boundaries
where de-identification finally succeeds.

14



Re-identification Science Policy Short-comings:

Cont’d: 6 ways in which “Re-identification Science” has
(thus far) typically failed to support sound public policies.

4. Failing to distinguish between sample uniqueness,
population uniqueness and re-identifiability (i.e., the
ability to correctly link population unique observations
to identities).

5. Failing to fully specify relevant threat models (using
data intrusion scenarios that account for all of the
motivations, process steps, and information required to
successfully complete the re-identification attack for
the members of the population).

6. Unrealistic emphasis on absolute “Privacy Guarantees”
and failure to recognize unavoidable trade-offs between
data privacy and statistical accuracy/utility.

15



Re-identification Science Can Better Inform Policy/Practice

1. Demonstrate re-identification risks on data where modern statistical
disclosure control methods have actually been used.

2. Use proper statistical random samples and scientific study designs in
order to provide representative risk estimates.

3. Use ethically-designed re-identification experiments to better
characterize re-identification risks for quasi-identifiers beyond
simple demographics

4. Design experiments to show the boundaries where de-identification
finally succeeds and provide evidence to justify any data intruder
knowledge assumptions.

5. Verify re-identifications and report false-positive rates for supposed
re-identifications.

6. Investigate multiple realistic and relevant threats and fully specify
these re-identification threat models.

7. Use modern probabilistic uncertainty analyses to examine impact of
uncertainties in re-identification experiments.

16



Recommended De-identified Data Use Requirements
Recipients of De-identified Data should be required to:

1) Not re-identify, or attempt to re-identify, or allow to
be re-identified, any patients or individuals within the
data, or their relatives, family or household members.

2) Not link any other data elements to the data without
obtaining certification that the data remains de-
identified.

3) Implement and maintain appropriate data security
and privacy policies, procedures and associated
physical, technical and administrative safeguards to
assure that it is accessed only by authorized personnel
and will remain de-identified.

4) Assure that all personnel or parties with access to the
data agree to abide by all of the foregoing conditions.

17



We also need..

Comprehensive, Multi-sector Legislative
Prohibitions Against Data Re-identification

A BILL

To protect the privacy of potentially identifiable personal information by
establishing accountability for the use and transfer of potentially
identifiable personal information. [Version 4 4]

SECTION 1. SHORT TITLE.

This Act may be cited as the “Personal Data Deidentification Act™.

SEC. 2. DEFINITIONS.
As used 1n this Act:

(1) DATA AGREEMENT —The term “data agreement™ means a
contract, memorandum of understanding, data use agreement. or similar
agreement between a discloser and a recipient relating to the use of
personal information.

(2) DATA AGREEMENT SUBJECT TO THIS ACT —The term “data

Robert Gellman, 2010
https://fpf.org/wp-content/uploads/2010/07/The Deidentification Dilemma.pdf
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Question 1: Is Y-STR Attack Economically Viable?

Probably not -- unclear whether it eventually could be.
Q2: Is Genomic “De-identification” pointless?

No, removing State, Grouping YoB would help importantly.
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Given the inherent extremely large combinatorics of genomic
data nested within inheritance networks which determine

how genomic traits (and surnames) are shared with our
ancestors/descendants, the degree to which such information

could be meaningfully “de-identified” are non-trivial.
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http://blogs.law.harvard.edu/billofhealth/2013/05/22/re-identification-is-not-the-problem-the-delusion-of-de-identification-is-re-identification-symposium/
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